Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Infect Dis Ther ; 12(2): 563-575, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2175271

ABSTRACT

INTRODUCTION: This study aimed to understand the impact of the coronavirus disease 2019 (COVID-19) epidemic on the distribution and antibiotic resistance of pathogenic bacteria isolated from the lower respiratory tract of children in our hospital. METHODS: Antimicrobial susceptibility tests were performed on bacteria isolated clinically from the lower respiratory tracts of children in our hospital from 2018 to 2021 by the Kirby-Bauer method and automated systems. RESULTS: From 2018 to 2021, the top three lower respiratory tract clinical isolates in our hospital were Streptococcus pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae. These three species showed obvious seasonal epidemic patterns, and their numbers decreased significantly during the COVID-19 epidemic, from 4559 in 2019 to 1938 in 2020. Bacterial resistance to antibiotics also changed before and after the COVID-19 epidemic. The annual proportions of methicillin-resistant S. aureus (MRSA) were 41%, 37.4%, 26.2%, and 29.8%. The resistance rates of Klebsiella pneumoniae to ceftriaxone were 40.5%, 51.9%, 35.3%, and 53.3%, and the detection rates of carbapenem-resistant K. pneumoniae (CRKP) were 2.7%, 11.1%, 5.9%, and 4.4%. The detection rates of ß-lactamase-producing H. influenzae were 51.9%, 59.2%, 48.9%, and 55.3%. The rate of MRSA, ceftriaxone-resistant K. pneumoniae, CRKP, and ß-lactamase-producing H. influenzae decreased significantly in 2020 compared with 2019, whereas that of carbapenem-resistant P. aeruginosa and carbapenem-resistant A. baumannii increased. The detection rates of ß-lactamase-negative ampicillin-resistant H. influenzae (BLNAR) gradually increased over the 4 years. CONCLUSIONS: Protective measures against COVID-19, including reduced movement of people, hand hygiene, and surgical masks, may block the transmission of S. pneumoniae, H. influenzae, and M. catarrhalis and reduce the detection rate of MRSA, ceftriaxone-resistant K. pneumoniae, CRKP, and ß-lactamase-producing H. influenzae.

2.
Sci Rep ; 12(1): 16926, 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2062269

ABSTRACT

A range of public health measures have been implemented to suppress local transmission of coronavirus disease 2019 (COVID-19) in Shenzhen. We examined the effect of these measures on the prevalence of respiratory pathogens in children. Clinical and respiratory pathogen data were collected for routine care from hospitalized children with acute respiratory infections in Shenzhen Children's Hospital from July 2018 to January 2022. Nasopharyngeal swabs were collected and respiratory pathogens were detected using standardized clinical diagnostics as part of routine care. Data were analyzed to describe the effects of COVID-19 prevention procedures on other common pathogens. A total of 56,325 children under 14 years of age were hospitalized with an acute respiratory infection during the study period, 33,909 were tested from July 2018 to January 2020 (pre-lockdown), 1168 from February 2020 to May 2020 (lockdown) and 21,248 from July 2020 to January 2022 (post-lockdown). We observed a 37.3% decline of routine care in respiratory infection associated hospital admission in the 19 months' post-lockdown vs. the 19 months' pre-lockdown. There were 99.4%, 16.0% and 1.26% reductions measured for Mycoplasma pneumoniae, influenza virus A and adenovirus, respectively. However, a 118.7% and 75.8% rise was found for respiratory syncytial virus (RSV) and human para-influenza virus (HPIV) during the 19 months' post-lockdown in comparison to the pre-pandemic period. The detection of RSV especially increased in toddlers after the lockdown. Lockdown measures during the COVID-19 pandemic led to a significant reduction of Mycoplasma pneumoniae, influenza virus A and adenovirus infection. In contrast, RSV and HPIV infection increased.


Subject(s)
Adenoviridae Infections , COVID-19 , Orthomyxoviridae , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adenoviridae Infections/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Communicable Disease Control , Humans , Infant , Mycoplasma pneumoniae , Pandemics/prevention & control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control
3.
Virol J ; 18(1): 202, 2021 10 09.
Article in English | MEDLINE | ID: covidwho-1463255

ABSTRACT

BACKGROUND: The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children. METHODS: This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children's Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (during the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed. RESULTS: A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019.The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001). CONCLUSIONS: Successful containment of seasonal influenza as a result of COVID-19 control measures will ensure we are better equipped to deal with future outbreaks of both influenza and COVID-19.Caused by virus competition, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased in Shenzhen,that reminds us we need to take further monitoring and preventive measures in the next epidemic season.


Subject(s)
Antibiosis , COVID-19/epidemiology , Respiratory Tract Diseases/epidemiology , SARS-CoV-2/isolation & purification , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Adolescent , COVID-19/virology , Child , Child, Hospitalized , Child, Preschool , China , Enterovirus/genetics , Enterovirus/isolation & purification , Female , Humans , Infant , Influenza A virus/genetics , Influenza A virus/isolation & purification , Male , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Nasopharynx/microbiology , Nasopharynx/virology , Prevalence , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/virology , Respirovirus/genetics , Respirovirus/isolation & purification , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL